Geometry of infinite dimensional unitary groups: convexity and fixed points

نویسندگان

چکیده

In this article we study convexity properties of distance functions in infinite dimensional Finsler unitary groups, such as the full group, Schatten perturbations identity and groups finite von Neumann algebras. The structures are defined by translation different norms on tangent space at identity. We first prove a result for metric derived from operator norm group. also strong results squared metrics Hilbert-Schmidt both cases spaces endowed with an inner product trace. These applied to fixed point quantitative bounds certain rigidity problems. Radius all shown be optimal.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unitary structure in representations of infinite-dimensional groups and a convexity theorem

In this paper, we show that a K a c M o o d y algebra fl(A) associated to a symmetr izable generalized Car tan matr ix A carries a cont ravar ian t Hermi t i an form which is positive-definite on all root spaces. We deduce that every integrable highest weight g(A)-module L(A) carries a cont ravar ian t positivedefinite Hermi t i an form. This allows us to define the m o m e n t m a p and prove ...

متن کامل

a note on fixed points of automorphisms of infinite groups

‎motivated by a celebrated theorem of schur‎, ‎we show that if~$gamma$ is a normal subgroup of the full automorphism group $aut(g)$ of a group $g$ such that $inn(g)$ is contained in $gamma$ and $aut(g)/gamma$ has no uncountable abelian subgroups of prime exponent‎, ‎then $[g,gamma]$ is finite‎, ‎provided that the subgroup consisting of all elements of $g$ fixed by $gamma$ has finite index‎. ‎so...

متن کامل

0 Wavelet filters and infinite - dimensional unitary groups

Abstract. In this paper, we study wavelet filters and their dependence on two numbers, the scale N and the genus g. We show that the wavelet filters, in the quadrature mirror case, have a harmonic analysis which is based on representations of the C∗-algebra ON . A main tool in our analysis is the infinite-dimensional group of all maps T → U (N) (where U (N) is the group of all unitary N-by-N ma...

متن کامل

Heat kernel measures and Riemannian geometry on infinite-dimensional groups

I will describe a construction of heat kernel measures on GL(H), the group of invertible operators on a complex Hilbert space H. This measure is determined by an infinite dimensional Lie algebra g and a Hermitian inner product on it. The main tool in this construction is a diffusion in a Hilbert space ambient g. Then I’ll describe holomorphic functions and their properties. One of interesting n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2023

ISSN: ['0022-247X', '1096-0813']

DOI: https://doi.org/10.1016/j.jmaa.2023.127436